
HGAA: An Architecture to Support Hierarchical Group and
Attribute-Based Access Control

Daniel Servos
Western University

London, Ontario
dservos5@uwo.ca

Sylvia L. Osborn
Western University

London, Ontario
sylvia@csd.uwo.ca

ABSTRACT
Attribute-Based Access Control (ABAC), a promising alternative to
traditional models of access control, has gained significant attention
in recent academic literature. This attention has lead to the creation
of a number of ABAC models including our previous contribution,
Hierarchical Group and Attribute-Based Access Control (HGABAC).
However, to date few complete solutions exist that provide both an
ABAC model and architecture that could be implemented in real
life scenarios.

This work aims to advance progress towards a complete ABAC
solution by introducing Hierarchical Group Attribute Architecture
(HGAA), an architecture to support HGABAC and close the gap be-
tween a model and real world implementation. In addition to HGAA
we also present an attribute certificate specification that enables
users to provide proof of attribute ownership in a pseudonymous
and off-line manner, as well as an update to the Hierarchical Group
Policy Language (HGPL) to support our namespace for uniquely
identifying attributes across disparate security domains.

Details of our HGAA implementation are given and a preliminary
analysis of its performance is discussed as well as directions for
future work.

CCS CONCEPTS
• Security and privacy→ Access control; Authentication; Secu-
rity protocols; Domain-specific security and privacy architectures;

KEYWORDS
ABAC, Attribute-Based Access Control, HGABAC, Hierarchical
Group and Attribute-Based Access Control, Architecture, Access
Control, Attribute Certificate, Attribute Authority, HGAA, Hierar-
chical Group Attribute Architecture

ACM Reference Format:
Daniel Servos and Sylvia L. Osborn. 2018. HGAA: An Architecture to Sup-
port Hierarchical Group and Attribute-Based Access Control. In ABAC’18:
3rd ACM Workshop on Attribute-Based Access Control, March 19–21, 2018,
Tempe, AZ, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3180457.3180459

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ABAC’18, March 19–21, 2018, Tempe, AZ, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5633-6/18/03. . . $15.00
https://doi.org/10.1145/3180457.3180459

1 INTRODUCTION
Attribute-Based Access Control (ABAC) is an emerging form of
access control that bases access control decisions on the attributes
of users, objects and the environment rather than the identity of
users or the roles/clearances assigned to them. While the beginnings
of ABAC in academic literature can be seen as early as 15 years
ago[19], ABAC has only recently gained significant attention in
the past half decade[15]. This newfound interest has resulted in the
creation of numerous ABAC models[5, 10, 12, 13], however, none
to date have gained acceptance as a unified standard or provided
a complete view of how they might be implemented in practice.
Real-world implementation details and results are still needed and
existing models largely lack architectural specifications required
for actual use and empirical study.

In our pervious work[13], we introduced Hierarchical Group and
Attribute-Based Access Control (HGABAC), a model of Attribute-
Based Access Control that incorporates hierarchical user and object
groups to ease administration and increase policy flexibility. Since
publication, extensions to and expansion of the original HGABAC
model have been explored by ourselves and others, including in-
troduction of an adminstative model (GURAG)[7], the creation
of an authorization architecture for a restricted HGABAC model
(rHGABAC)[3] and preliminary work towards incorporating del-
egation concepts[14]. However, none of these works provide a
complete architecture to facilitate real-world implementation and
use of HGABAC in a distributed environment.

Questions like “who assigns the attributes?”, “how are attributes
shared with each party?”, “how does the user provide proof of at-
tribute ownership?”, “where and how are policies evaluated?”, “how
will the model scale in real-world use?”, etc. remain unanswered.
This paper attempts to answer these questions and more in regards
to HGABAC through the creation of an attribute-based architec-
ture, entitled Hierarchical Group Attribute Architecture (HGAA).
HGAA enables the use of HGABAC in distributed environments
by formalizing and providing the following key components:

• Attribute Authority: A service for managing, storing and pro-
viding user attributes in the form of attribute certificates that are
used to authenticate with a user service provider.

• Attribute Certificate: A cryptographically secured certificate
that details attributes a user has activated for a given session as
well as revocation and delegation rules under which the certifi-
cate was issued.

• HGABAC Namespace: A URI-based namespace for uniquely
identifying HGABAC elements (attributes, users, objects, etc.)
across disparate security domains and authorities.

• PolicyAuthority: A service which manages and evaluates HGABAC
policies on behalf of a user service provider.

https://doi.org/10.1145/3180457.3180459
https://doi.org/10.1145/3180457.3180459
https://doi.org/10.1145/3180457.3180459

ABAC’18, March 19–21, 2018, Tempe, AZ, USA Daniel Servos and Sylvia L. Osborn

User
Attributes

Object
Attributes

Users

Objects

User
Groups

Sessions

User Group
Hierarchy

User Group Assignment

User Group
Attribute

Assignment

User Attribute
Assignment

Attribute
Activation

User Session

Policies Operations

Permissions

Object Attribute Assignment

Object
Groups

Object
Group

Assignment

Object Group
Attribute

Assignment

Object Group
Hierarchy

Environment
& Admin

Attributes

Connection
Attributes

Figure 1: HGABAC components and relations using Crow’s
Foot Notation to denote cardinality of relationships. Primi-
tive components are shown in ovals.

Listing 1: Example HGABAC HGPLv1 Policy Permission
Pairs
P1 = (u s e r . age >= 18 AND o b j e c t . t i t l e = " Adul t ␣ Only ␣ Book " , r ead)
P2 = (u s e r . i d = o b j e c t . author , w r i t e)
P3 = (u s e r . r o l e IN { " d o c t o r " , " i n t e r n " , " s t a f f " } AND

u s e r . i d != o b j e c t . p a t i e n t , r ead)
P4 = (o b j e c t . type = " program " AND o b j e c t . r e q u i r e d _ c e r t i f i c a t i o n s

SUBSET u s e r . c e r t i f i c a t i o n s , run)

• User Service Provider: A provider of services to end users that
have access restricted on the basis of one or more HGABAC
policies.

These service components are implemented as JSON-based web
services and performance results are given to demonstrate the
scalability of the architecture in terms of number of attributes
and policy complexity. A detailed attribute certificate format is
specified that includes support for future delegation and revocation
extensions as discussed in [14].

The remainder of this paper is laid out as follows; Section 2 briefly
introduces HGABAC and gives background information, Section
3 discusses related work and it’s applicability to HGAA, Section
4 introduces the overall architecture and details each component,
Section 5 details our HGAA implementation and gives preliminary
performance results and finally Section 6 presents our concluding
remarks and considers directions for future work.

2 HGABAC BACKGROUND
HGABAC[13] provided a formal model of ABAC that introduced
group based hierarchical representations of object and user at-
tributes that was not available in other models at the time. In
HGABAC, attributes are assigned both directly to access control
entities and indirectly assigned through user and object attribute
groups (these relations are shown in Figure 1). Attribute groups
help simplify administration of ABAC systems by allowing adminis-
trators to create user or object groups whose membership indirectly
assigns sets of attribute/value pairs to its members. These groups

Min Group
{}

Undergrads
{(studet_level, 1),

(room_access, {MC8,

MC10})}

Staff

{(employe_level, 1),
(room_access,

{MC355})}

Gradstudents
{(studet_level, 2),

(room_access, {MC342,

MC325})}

Faculty

{(employe_level, 2),
(room_access,

{MC320})}

Figure 2: Example user group hierarchy represented as a
graph. The large bold text denotes the group’s name, be-
neath which the set of directly assigned attributes is shown.

are hierarchical and inherit attribute/value pairs from their par-
ent groups allowing for more flexible policy representation when
combined with the HGABAC policy language.

The group hierarchy is represented as a directed acyclic graph
with each group a vertex and each edge a parent/child relation
between the groups such that the edge is directed to the parent.
All possible paths in the graph have the constraint that they must
eventually lead to a special min_group that has no parents and no as-
signed attributes. Child groups inherit the attributes of their parent
groups such that the child group’s “effective” set of attributes (i.e.
the set of attributes both directly assigned to the group and inher-
ited from other groups) consists of the union of all parent groups’
“effective” attributes with the attributes directly assigned to the
child. An example user group graph is shown in Figure 2, in which
directly assigned attributes are shown under each group name. In
this example, the effective set of attributes for the Gradstudents
group would be {{employee_level , {1}}, {student_level , {1, 2}},
{room_access, {MC8,MC10,MC355,MC342,MC325}} as the em-
ployee_level attribute is inherited from the Staff group and values
of the other attributes are merged with the values from the parent
groups (Staff and Undergrads). In the case of the Faculty group,
the effective set of attributes would be {{employee_level , {1, 2}},
{room_access, {MC355,MC320}}, only inheriting attributes from
the Staff group.

In addition to the core HGABAC model, an attribute-based policy
language (HGPLv1) was created to support policy creation and eval-
uation. HGPLv1 represents policies as C style boolean statements
that may evaluate to TRUE, FALSE or UNDEFINED. A resulting eval-
uation of TRUE implies that access should be granted, FALSE that it
should be denied and UNDEFINED if the policy can not be properly
evaluated at the current time (equivalent to a result of FALSE for
access control decision purposes). Policies are associated with a set
of operations that they grant if satisfied.

Listing 1 presents a number of example policies that are possible
in HGPLv1. Policy P1 states that any user with an age of 18 or
older can read the book with the title “Adult Only Book”. Policy P2
allows a user to write to any object they are an author of. Policy P3
limits access to read a medical record to users who have the role

HGAA: An Architecture to Support Hierarchical Group and Attribute-Based Access ControlABAC’18, March 19–21, 2018, Tempe, AZ, USA

Listing 2: XACML rule to only allow access between 9AM and 5PM.
< Rule R u l e I d = " TimeRule " E f f e c t = " Permi t " >

< x a c m l 3 : D e s c r i p t i o n >Allow i f t ime between 9AM and 5PM< / x a c m l 3 : D e s c r i p t i o n >
< x a c m l 3 : T a r g e t / >
< C o n d i t i o n F u n c t i o n I d = " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : a n d " >

<Apply F u n c t i o n I d = " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : t i m e −g r e a t e r −than−or−e q u a l "
<Apply F u n c t i o n I d = " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : t i m e −one−and−only " >

< E n v i r o n m e n t A t t r i b u t e S e l e c t o r DataType= " h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# t ime "
A t t r i b u t e I d = " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : e n v i r o n m e n t : c u r r e n t −t ime " / >

< / Apply>
< A t t r i b u t e V a l u e DataType= " h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# t ime " >09 : 0 0 : 0 0 < / A t t r i b u t e V a l u e >

< / Apply>
<Apply F u n c t i o n I d = " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : t i m e − l e s s −than−or−e q u a l "

<Apply F u n c t i o n I d = " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : t i m e −one−and−only " >
< E n v i r o n m e n t A t t r i b u t e S e l e c t o r DataType= " h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# t ime "

A t t r i b u t e I d = " u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : e n v i r o n m e n t : c u r r e n t −t ime " / >
< / Apply>
< A t t r i b u t e V a l u e DataType= " h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# t ime " >17 : 0 0 : 0 0 < / A t t r i b u t e V a l u e >

< / Apply>
< / C o n d i t i o n >

< / Rule >

Listing 3: HGABC Policy to only allow access between 9AM
and 5PM.

env . t ime_o f_day_hour >= 9 AND env . t ime_o f_day_hour <= 17

doctor, intern or staff but only if they are not listed as a patient
in that record. And finally, policy P4 specifies that a user can run
a program if they have the required certifications listed in the
program’s certifications attribute.

It has been shown[13] that HGPLv1 and HGABAC are capable of
emulating MAC, DAC and hierarchical RBAC (though not separa-
tion of duties) and that their attribute groups result in less complex
(in terms of the number of assignments and relations between access
control entities) representations than standard (non-hierarchical)
ABAC models under a number of hypothetical use cases.

3 RELATEDWORK
A number of generic access control frameworks and architectures
exist that could conceivably be used to support HGABAC. The
most notable of these are the Security Assertion Markup Lan-
guage (SAML)[9], the eXtensible Access Control Markup Language
(XACML)[1] and the AAA Authorization Framework[18]. SAML
provides an XML-based standard for exchanging authentication
and authorization information commonly used for single sign-on
(SSO). XACML provides a XML-based standard for representing and
sharing access control policies and an accompanying architecture
that follows the AAA Authorization Framework which describes
an authorization framework as a combination of the following
distributed policy modules:
• Policy Retrieval Point (PRP): Point at which a policy is re-

trieved from a Policy Repository.
• Policy Decision Point (PDP): Point where a policy from a PRP

is evaluated based on information from one or more PIPs.
• Policy Enforcement Point (PEP): Point at which the policy

is enforced (i.e. the point at which a user is denied or granted
access to a service based on the result of the PDP).

• Policy Information Points (PIP): Point at which information
needed to evaluate a policy is retrieved. In the case of ABAC, this
is normally attributes and their values.

• Policy Administration Point (PAP): Point at which policies
are administered and/or created1.
While it may be possible to create a HGABAC architecture-based

system solely on these standards (and this is a possible direction
for future work mentioned in Section 6), such a solution would
face a number of issues and shortcomings addressed by our HGAA
architecture:
• Off-Line PIPs: In the most common use of the XACML architec-

ture, a PDP requests the policy information required to evaluate
a policy from a PIP after it receives a request from a PEP (presum-
ably triggered by a user attempting to access a service). However,
this approach is problematic if PIPs are unavailable (e.g. a user’s
home domain may not have a PIP for user attributes that is avail-
able continuously or may wish to only assign attributes off-line)
or such requests introduced excessive overhead (e.g. if a large
number of PIPs need to be contacted to collect a full set of a
user’s attributes). HGAA provides a solution in which no outside
PIPs need be contacted if an attribute certificate is available.

• Public Key Infrastructure (PKI) Overhead: X.509 Attribute
Certificates[4] and SAML require the use of X.509 PKI which may
be unavailable or overkill in many cases. Additionally, requiring
attribute certificates to be accompanied by the holder’s Public
Key Certificate can weaken anonymity, a key feature of ABAC.
HGAA overcomes this by using a simplified public key based trust
system between Policy and Attribute Authorities and specifying
an attribute certificate format that does not require X.509 Public
Key Certificates and allows for pseudonymity.

• Future Support for Delegation: A future goal of HGABAC
is to support one or more models of delegation as described
in [14]. While XACML does have a delegation profile[11], the
style of delegation supported is closer to administration than
traditional user-to-user delegation. HGAA provides a number
of points upon which future extensions enabling a variety of
delegation and revocation models can be built while maintaining
backwards compatibility.

• HGABAC Specific v.s. Generic Architecture: XACML sup-
ports a large range of flexible access control policies that do not
necessarily conform to the HGABAC model or policy language.

1Not defined in the AAA Authorization Framework, only in XACML

ABAC’18, March 19–21, 2018, Tempe, AZ, USA Daniel Servos and Sylvia L. Osborn

User Service Provider

Protected User
Service

Object Attribute
Database

User Service Provider

Protected User
Service

Object Attribute
Database

Policy Authority

Policy Database

Static Environment
& Admin Attribute

Database

Policy Authority

Policy Database

Static Environment
& Admin Attribute

Database

Attribute Authority

User Attribute
Database

Attribute Authority

User Attribute
Database

User

Attribute Store
Service

Policy Decision Point
Service

Policy
Administration Point

Service

Attribute
Administration Point

Service

PRP

PIP

PIP

PEP

PIP

PDP

PAP

1.
 C

e
rt

ifi
ca

te
 R

e
q

u
es

t:

A
ut

ho
ri

za
tio

n
&

 P
ub

lic
 K

ey

3
. A

ttrib
u

te
C

ertificate

4. Session Start:
Attribute Certificate

8. Session ID & Expiry Date

9. Session ID, User Service
Request & Signature

5
. C

re
at

e
 S

es
si

on
:

A
tt

ri
bu

te
 C

er
tif

ic
at

e
&

S

e
rv

ic
e

 I
D

11. Retrieve
Relevant

Attributes

13. Request Result

PIP

7
. S

es
si

o
n

 I
D

 &
 E

xp
ir

y
D

at
e

1
0.

 P
o

lic
y

Ev
al

u
at

io
n

 R
eq

u
e

st
:

Se
ss

io
n

 I
D

, P
o

lic
y

ID
 &

 O
b

je
ct

A

tt
ri

b
u

te
/V

al
ue

 S
et

1
2.

 E
va

lu
at

io
n

 R
e

su
lt

:
TR

U
E,

 F
AL

SE
 o

r
U

N
D

EF

10. Relevant
Object Attributes

6. Generate Session ID & Save
Attribute Certificate Locally

Figure 3: HGAA services and information flow. Numbers indicate order of requests. Dotted lines denote components of a
service (i.e. Attribute Store Service is a component/subservice of the Attribute Authority Service).

Attribute Authority
Policy

Authority

Protected
User

Service

H
as

 A
tt

ri
bu

es
 o

f

H
as

 C
re

de
n

ti
al

s
Fo

r

A
u

th
o

ri
ze

s
W

it
h

Trusts
(Has public key)

Uses Services of

Uses
Policies

of

SLA

User

Figure 4: Relationships between HGAA services and users.

Use of XACML would require the creation of a new XACML
HGABAC profile and means of translating HGABAC policies
into XACML. As HGAA is designed specifically for HGABAC,
native HGABAC policies are supported without translation to a
secondary policy language and no features are restricted or com-
promised while ensuring that the HGABAC model is enforced.

• Lightweight Approach: XACML and other attribute based ar-
chitectures provide flexibility and interoperability at the cost of
increasing complexity and verbosity of access control policies
(for example see the comparison of a XACML and HGABAC
policy in Listings 2 & 3) as well as the supporting infrastructure.
HGABAC and HGAA take a lightweight approach, aiming to
provide a simplified yet powerful policy language that requires
minimal infrastructure to support.

In addition to the generic standards mentioned, the work by
S. Bhatt et al.[3] towards creating an authorization architecture
and implementation of HGABAC utilizing the NIST Policy Ma-
chine (PM)[5, 6] is also of note. S. Bhatt et al. introduce a restricted
HGABAC model (rHGABAC) formalized as a single-value enumer-
ated policy enabling it to be implemented using a bare minimum
version of the PM to take advantage of the PM’s existing access
control framework. While they were successful in implementing
the core features of HGABAC, the restricted model only allowed
for simplified policies and lacks all assignment relations from the
original HGABAC model. Further, the authorization architecture
presented is limited to a single PIP that is combined with the PDP
and PAP.

4 ARCHITECTURE
The HGAA architecture is comprised of three core service types;
the Attribute Authority service (discussed in Subsection 4.2), the
Policy Authority service (discussed in Subsection 4.5) and the ser-
vices provided by the User Service Provider (referred to as “User
Services" and discussed in Subsection 4.4). Using terminology from
the AAA Authorization Framework, the Attribute Authority would
be analogous to a PIP, the Policy Authority to a combined PDP, PRP
and PAP and the user services to a PEP. A simplified (only showing
a single instance of each service and one user) representation of
this architecture and the information flow between the services is
shown in Figure 3.

Many instances of Attribute Authorities, Policy Authorities and
User Services are allowed to coexist across diverse security domains.
Interoperability between these services and domains is possible
so long as a trust relation has been established at a prior time
between a given Attribute Authority and a given Policy Authority.
From a technical standpoint, this trust relation consists of a Policy

HGAA: An Architecture to Support Hierarchical Group and Attribute-Based Access ControlABAC’18, March 19–21, 2018, Tempe, AZ, USA

Listing 4: HGABAC URI Based Namespace Grammar
A b s o l u t e URI :

hgabac : / / < a u t h o r i t y >[[/ < type >]/ < element_name >]

R e l a t i v e URI :
[/] < type >/ < element_name >
| [/] < element_name >

type :
u s e r
| group [/ u s e r | / o b j e c t]
| a t t r i b u t e [/ < a t t _ s u b _ t y p e >]
| o b j e c t [/ < ob j_ sub_ type >]
| s e s s i o n
| o p e r a t i o n
| p e r m i s s i o n
| p o l i c y
| s e r v i c e

a t t _ s u b _ t y p e s :
u s e r
| o b j e c t
| environment
| admin
| c o n n e c t i o n
| unknown

o b j _ s u b _ t y p e s :
f i l e
| s e r v i c e
| hardware
| program
| d a t a b a s e
| meta
| unknown

element_name :
d e f i n e d by regex : [a−zA−Z0 − 9 \ . \ − \ _]+

a u t h o r i t y :
<host >[: < por t >]

h o s t :
v a l i d hostname as per RFC 1123

p o r t :
d e f i n e d by regex : [1 −9] [0 −9] ∗
must be l e s s then 6 5 5 3 6 .

Authority listing an Attribute Authority’s public key as trusted
(thus accepting attribute certificates issued by this authority). From
a practical standpoint, this means that users who are issued an
attribute certificate (hereinafter referred to as an “AC" and discussed
in more depth in Subsection 4.3) from one domain/organization
can access the services of another domain/organization if a trust
relation exists between their Attribute and Policy Authorities and
the user satisfies the required policies. User Services are able to
utilize HGABAC by employing the services provided by a Policy
Authority to evaluate user requests (which include an AC issued
by a trusted Attribute Authority). These relations between services
and users are shown in Figure 4.

The following subsections describe each major HGAA compo-
nent in more depth including the requests between services shown
in Figure 3.

4.1 HGABAC Namespace
As multiple Attribute Authorities may exist and do not directly
communicate, attributes from different sources must be uniquely

identifiable and conflicts avoided. This issue is not isolated to HGAA
but an open ABAC problem that has been identified in recent
literature[8, 15]. We offer a partial solution that is similar to the
scheme used in XACML, in which each attribute (and all other
HGABAC elements) is given a unique URI[2] based on the gram-
mar given in Listing 4. The key difference between our namespace
scheme and XACML’s is our support for and treatment of relative
URIs.

Absolute URIs such as hgabac://cs1.ca/attribute/user/age specify
a HGABAC element (in this case a user attribute) from a specific au-
thority (in this case cs1.ca). A relative URI such as /attribute/user/age
would specify a HGABAC element from any authority (in this case
an age user attribute from any authority). By omitting other parts
of the path, relative URIs can make broader matches. For exam-
ple, /attribute/role would match any role attribute regardless of
attribute type or issuing authority. Supporting both absolute and
relative URIs in this fashion allows policies to be created that ref-
erence attributes from a distinct authority (absolute reference) or
any attribute of the same name and type (relative reference).

4.2 Attribute Authority
The Attribute Authority provides services to administer the user
group hierarchy and user attribute information in a given do-
main/organization and issue ACs to users within that domain. It is
comprised of two subservices and a database (as shown in Figure
3); the Attribute Administration Point Service, the Attribute Store
services, and the User Attribute Database. The Attribute Adminis-
tration Point Service provides administrative operations related to
managing and assigning user attributes. The User Attribute Data-
base stores user attribute assignments for users in the Attribute
Authority’s domain. The Attribute Store Service provides two im-
portant functions; first and most importantly it deals with certificate
requests and issuing ACs and secondly it maintains a revocation
list for all ACs issued in the domain that have been revoked.

The certificate request process proceeds as follows (and is shown
as steps 1, 2 and 3 in Figure 3):

(1) The user sends a certificate request to the Attribute Author-
ity containing a list of user attributes they wish to activate
for a given session, their public key from a public/private key
pair generated solely for this session and their credentials for
authenticating with the Attribute Authority. The method of au-
thentication is left as an implementation detail for the Attribute
Authority and may be domain specific. As per the HGABAC
specification, users may activate a subset of their assigned and
inherited user attributes to allow for principle of least priv-
ilege and prevent identifying information being included in
unneeded attributes.

(2) If the user’s credentials are valid, the Attribute Authority re-
quests the activated attributes assigned to the user and their
values from the Attribute Database and generates an AC as
described in Subsection 4.3. This AC contains the public key
provided by the user in step 1, such that the user can provide
proof of ownership of the AC using their corresponding private
key without providing identifying information.

(3) The generated AC is issued to the user who may now use it to au-
thenticate with User Service Providers including those outside

ABAC’18, March 19–21, 2018, Tempe, AZ, USA Daniel Servos and Sylvia L. Osborn

of the user’s home domain without providing any additional
credentials. No further communication is required between the
user and the Attribute Authority (or the Attribute Authority and
any other component of the HGAA) for this session after the
certificate has been issued and this process may be completed
off-line.

Revocation of ACs may happen in two ways. First, the Attribute
Authority may embed revocation rules within the AC that define
conditions under which the certificate is valid. For example, a com-
mon revocation rule would be to revoke a certificate after a set
date/time. The second means of revoking a certificate is through
the revocation list maintained by the Attribute Store subservice.
AC serial numbers listed in the list are considered to no longer
be valid and revoked. Providing this list is optional and requires
the Attribute Authority to be on-line and accessible (at least pe-
riodically) by Policy Authorities such that revocation lists can be
synchronized.

4.3 Attribute Certificate
Attribute Certificates (ACs) allow users to offer proof of their at-
tributes to User Service Providers. This proof comes in the form
of a cryptographically signed certificate issued by a trusted At-
tribute Authority accompanied by the public/private session key
pair generated by the user at the start of the session (the public key
being embedded in the certificate and the user proving they are in
possession of the corresponding private key by signing request).

We loosely base the design of our AC format on X.509 Attribute
Certificates[4] but without the need for Public Key Certificates or
supporting PKI. The logical format of the certificate is defined using
Abstract Syntax Notation One (ASN.1) in Listing 5. Our AC consists
of the following 8 sections:
• ACInformation: Contains meta information about the AC. Con-

sists of the certificate version number (to facilitate compatibility
with future versions), a globally unique serial number2 and the
date and time the certificate was issued.

• ACIssuer: Identifying information about the issuer of the AC.
Comprised of the public key of the issuer (the attribute author-
ity) including information about the public key algorithm used, a
unique identifier for the issuing authority formatted as a HGABAC
Namespace URI (e.g. hgabac://cs1.ca for the authority cs1.ca), and
optionally, a common descriptive name for the issuing authority
and a URL to the authorities web service if publicly available.

• ACHolder: Pseudonymous information about the holder of the
AC (i.e. the user the AC was issued to). Contains the public key the
user is using for this session including information about the pub-
lic key algorithm used, a unique identifier for the user formatted
as a HGABAC Namespace URI3 (e.g. hgabac://cs1.ca/user/u1135
for the authoirty cs1.ca and the user u1135) and optionally a com-
mon descriptive name for the user if anonymity is not desired.

• Attribute Set: The set of user attributes and their values that the
user wishes to activate. Each attribute in the set must be assigned
to the user directly or inherited through group membership as

2Only needs to be globally unique for practical purposes and can be based on probability
rather than requiring coordination between issuing authorities.
3Note that this identifier is a pseudonym for the user and should not contain real
identifying information. This identifier can be different or partially randomized for
each session.

Listing 5: AC Format Defined in ASN.1
A t t r i b u t e C e r t i f i c a t e : : = SEQUENCE {

i n f o r m a t i o n ACInformation ,
i s s u e r ACIssuer ,
h o l d e r ACHolder ,
a t t r i b u t e s SEQUENCE OF A t t r i b u t e ,
r e v o c a t i o n R e v o c a t i o n R u l e s ,
d e l e g a t i o n D e l e g a t i o n R u l e s OPTIONAL ,
e x t e n s i o n s SEQUENCE OF ACExtens ions OPTIONAL ,
s i g n a t u r e ACSignature

}

ACInformat ion : : = SEQUENCE {
v e r s i o n ACVersion ,
s e r i a l INTEGER ,
i s s u e d DATE−TIME

}

ACVersion : : = INTEGER { v1 (0) }

ACIssuer : : = SEQUENCE {
i s s u e r P u b l i c K e y BIT STRING ,
i s s u e r K e y A l g o r i t h m A l g o r i t h m I d e n t i f i e r ,
i s s u e r U n i q u e I d e n t i f i e r OBJECT IDENTIFIER ,
i ssuerName V i s i b l e S t r i n g OPTIONAL ,
i s s u e r S e r v i c e U R L UTF8St r ing OPTIONAL

}

ACHolder : : = SEQUENCE {
h o l d e r P u b l i c K e y BIT STRING ,
ho lderKeyAlgor i thm A l g o r i t h m I d e n t i f i e r ,
h o l d e r U n i q u e I d e n t i f i e r V i s i b l e S t r i n g ,
holderName V i s i b l e S t r i n g OPTIONAL

}

A t t r i b u t e : : = SEQUENCE {
a t t r i b u t e I D OBJECT IDENTIFIER ,
a t t r i b u t e T y p e OBJECT IDENTIFIER ,
a t t r i b u t e V a l u e ANY DEFINED BY a t t r i b u t e T y p e OPTIONAL ,
a t t r i b u t e N a m e V i s i b l e S t r i n g OPTIONAL ,
. . .

}

R e v o c a t i o n R u l e s : : = SEQUENCE {
v a l i d A f t e r DATE−TIME ,
v a l i d B e f o r e DATE−TIME ,
r e v o c a t i o n S e r v i c e U R L UTF8St r ing OPTIONAL ,
. . .

}

D e l e g a t i o n R u l e s : : = SEQUENCE {
. . .

}

ACExtension : : = SEQUENCE {
e x t e n s i o n I D OBJECT IDENTIFIER ,
. . .

}

ACSignature : : = SEQUENCE {
s i g n a t u r e A l g o r i t h m A l g o r i t h m I d e n t i f i e r ,
s i g n a t u r e V a l u e BIT STRING

}

−− As Def ined i n RFC 5280
A l g o r i t h m I d e n t i f i e r : : = SEQUENCE {

a l g o r i t h m OBJECT IDENTIFIER ,
p a r a m e t e r s ANY DEFINED BY a l g o r i t h m OPTIONAL

}

HGAA: An Architecture to Support Hierarchical Group and Attribute-Based Access ControlABAC’18, March 19–21, 2018, Tempe, AZ, USA

described in HGABAC. Each attribute contains a unique identifier
following the HGABAC Namespace (e.g. hgabac://cs1.ca/attribute/
user/department), the attribute’s type, value and optionally a
common descriptive name for the attribute (e.g. “Department
Name”). In addtion to the requested user attributes, this set also
includes connection attributes that contain meta information
about the AC it’s self (such as date/time issued, issuer UID, holder
UID, group information, etc.) such that these properties can be
used in HGABAC policies.

• ACRevocationRules: Set of rules under which an AC is valid.
For the 1st version of the AC presented in this work, these are
limited to valid before and valid after rules. However, space is left
for extension and future work. Optionally, a URL to a revocation
list web service may be given. Such a service would provide a
list of all revoked AC serial numbers issued by the authority.

• ACDelegationRules: A place holder for delegation rules to be
added in future extensions. It is envisioned that this will allow
for Attribute Delegation as described in [14].

• Extension Set: A place holder for miscellaneous future exten-
sions. The only requirement given is that extension must have a
unique identifier.

• ACSignature: A cryptographic signature of all other sections of
the attribute certificate using the issuing authority’s private key
(that corresponds to the public key given in the ACIssuer section).
Also included is information about the signature algorithm used.
ACs are signed by the attribute authority when issued to users
as part of a certificate request and offer proof of the authority
trusting that the attributes contained describe the holder of the
certificate.

We support both a human readable text-based encoding of an
attribute certificate as well as a more efficient and less ambiguous
byte encoding detailed in Appendix A. An example of an attribute
certificate in the text-based encoding is shown in Listing 6.

4.4 User Service Provider
The User Service Provider provides services to end users that they
wish to protect using HGABAC and maintain the object group hi-
erarchy and object attribute information relevant to their services.
Providers designate the policies under which their services may be
accessed but outsource the work of storing and evaluating these
policies to the Policy Authority. Requests upon User Services are
allowed/denied based on the Policy Authority’s evaluation of ac-
cess policies and the attributes contained in the AC as well as the
attributes of objects the service will be accessing and the current
value of environment, connection and administrative attributes (as
described in HGABAC).

Creation of a session between the user and User Service are
handled as follows (shown as steps 4, 5, 7 and 8 in Figure 3):

(4) A user starts a session with a User Service by sending their AC
(issued to the user by the Attribute Authority in steps 1-3) to
the User Service.

(5) The User Service creates a session for the user by forwarding the
user’s AC to the Policy Authority in a Create Session request.
This request contains the user’s AC and the User Service’s
unique ID as well as authentication information for the User

Listing 6: Example AC in Text-Based Encoding. Public keys,
signature and attribute list abbreviated for length reasons.
−−−− BEGIN ATTRIBUTE CERTIFICATE −−−−

FORMAT : TEXT
VERSION : 1
==== BEGIN INFORMATION ====
VERSION : 1
SERIAL : 1 4 5 8 7 0 2 8 3 2 8 5 4 6 9 2 3 0 5 5 6 2 3 3 5 2 1 5 8 2 3 8 8 1 9 6 2 4 8 6 4 6 0 4 8 9 0 0 3
ISSUED : 1513313064
==== END INFORMATION ====
==== BEGIN ISSUER ====
PUBLIC KEY : LS0tLS1CR . . . ZLS0tLS0 =
KEY ALGORITHM : RSA [2 0 4 8]
UID : hgabac : / / c s 1 . ca
NAME: CS1 . CA A t t r i b u t e A u t h o r i t y
URL : h t t p : / / c s 1 . ca / A t t r i b u t e A u t h o r i t y /
==== END ISSUER ====
==== BEGIN HOLDER ====
PUBLIC KEY : LS0tLS1CRU . . . VZLS0tLS0=
KEY ALGORITHM : RSA [2 0 4 8]
UID : hgabac : / / c s 1 . ca / u s e r / u1135
NAME: D a n i e l S e r v o s
==== END HOLDER ====
==== BEGIN ATTRIBUTE SET ====
BEGIN ATTRIBUTE : / a t t r i b u t e / u s e r / a c c o u n t _ b a l a n c e
ATTRIBUTE ID : / a t t r i b u t e / u s e r / a c c o u n t _ b a l a n c e
ATTRIBUTE TYPE : A t t r i b u t e T y p e . FLOAT
ATTRIBUTE VALUE : 9 9 9 9 . 9 9 9 9
ATTRIBUTE NAME: a c c o u n t _ b a l a n c e
END ATTRIBUTE : / a t t r i b u t e / u s e r / a c c o u n t _ b a l a n c e
BEGIN ATTRIBUTE : / a t t r i b u t e / u s e r / age
ATTRIBUTE ID : / a t t r i b u t e / u s e r / age
ATTRIBUTE TYPE : A t t r i b u t e T y p e . INT
ATTRIBUTE VALUE : 31
ATTRIBUTE NAME: age
END ATTRIBUTE : / a t t r i b u t e / u s e r / age
BEGIN ATTRIBUTE : / a t t r i b u t e / u s e r / admin
ATTRIBUTE ID : / a t t r i b u t e / u s e r / admin
ATTRIBUTE TYPE : A t t r i b u t e T y p e . BOOL
ATTRIBUTE VALUE : TRUE
ATTRIBUTE NAME: admin
END ATTRIBUTE : / a t t r i b u t e / u s e r / admin
BEGIN ATTRIBUTE : / a t t r i b u t e / u s e r / c o u r s e s
ATTRIBUTE ID : / a t t r i b u t e / u s e r / c o u r s e s
ATTRIBUTE TYPE : A t t r i b u t e T y p e . SET
ATTRIBUTE VALUE : CS2211 , CS2034 , CS1234 , CS5678 , CS9000
ATTRIBUTE NAME: c o u r s e s
END ATTRIBUTE : / a t t r i b u t e / u s e r / c o u r s e s
BEGIN ATTRIBUTE : / a t t r i b u t e / c o n n e c t i o n / a c _ v e r s i o n
ATTRIBUTE ID : / a t t r i b u t e / c o n n e c t i o n / a c _ v e r s i o n
ATTRIBUTE TYPE : A t t r i b u t e T y p e . INT
ATTRIBUTE VALUE : 1
ATTRIBUTE NAME: a c _ v e r s i o n
END ATTRIBUTE : / a t t r i b u t e / c o n n e c t i o n / a c _ v e r s i o n
. . . many a t t r i b u t e s o m i t t e d f o r l e n g t h r e a s o n s . . .
BEGIN ATTRIBUTE : / a t t r i b u t e / c o n n e c t i o n / a a u t h _ u i d
ATTRIBUTE ID : / a t t r i b u t e / c o n n e c t i o n / a a u t h _ u i d
ATTRIBUTE TYPE : A t t r i b u t e T y p e . STRING
ATTRIBUTE VALUE : hgabac : / / c s 1 . ca
ATTRIBUTE NAME: a a u t h _ u i d
END ATTRIBUTE : / a t t r i b u t e / c o n n e c t i o n / a a u t h _ u i d
==== END ATTRIBUTE SET ====
==== BEGIN REVOCATION RULES ====
VALID AFTER : 1513313064
VALID BEFORE : 1513316664
URL : h t t p : / / c s 1 . ca / A t t r i b u t e A u t h o r i t y / r e v o c a t i o n _ l i s t
==== END REVOCATION RULES ====
==== BEGIN SIGNATURE ====
SIGNATURE ALGORITHM : RSASSA−PKCS1−v1_5 : SHA256
SIGNATURE VALUE : j 6 Z k 7 z l . . . e / eX1nGQ==
==== END SIGNATURE ====
−−−− END ATTRIBUTE CERTIFICATE −−−−

ABAC’18, March 19–21, 2018, Tempe, AZ, USA Daniel Servos and Sylvia L. Osborn

Service, if authentication between the Policy Authority and
User Service is required (depends on implementation).

(7) The Policy Authority responds with session information includ-
ing a unique session ID and expiry date/time. The User Service
saves a copy of the AC and session information until the ex-
piry date/time. For the remainder of the session it is no longer
required for the user or User Service to transmit the AC.

(8) The User service responds to the user’s session request with
the session ID and expiry date/time from the Policy Authority.
A session is considered active and valid so long as the AC is not
revoked, the session expiry date/time is not past and the user
has the session ID and private key corresponding to the public
key embedded in the AC. A user may terminate a session by
destroying the session ID and/or private key (destroying the
private key would terminate all sessions associated with the
AC).

Once a session has been established, a user may make requests
upon the User Service as follows (shown as steps 9, 10, 12 and 13
in Figure 3):
(9) The user makes a request on the User Service that includes the

session ID received in step 8 and signs this request with their
private key matching the public key in the AC.

(10) The User Service validates the signature on the request (using
the public key in the user’s AC) and if valid, sends a Policy
Evaluation request to the Policy Authority which includes the
session ID, the policy ID associated with the HGABAC policy
that must be passed for the request to be allowed and the set of
relevant object attributes (and their values).

(12) The Policy Authority responds to the Policy Evaluation request
with either TRUE, FALSE, or UNDEF based on the ternary logic
used in HGABAC. A TRUE response indicates that the policy
has been satisfied and the user’s request should be allowed.
A response of FALSE indicates that the policy has not been
satisfied and the request should be denied. A UNDEF response
indicates that the policy could not be evaluated (e.g. an attribute
in the policy was not available) and the request should be denied.

(13) Based on the result of the Policy Evaluation request, the User
Service either fulfills the user’s request and replies with an
appropriate response or responds with a message indicating
that the request was denied (optionally with more details as to
why).

Further requests may be made by the user in a like manner
without the need to create a new session so long as the session is
not expired or terminated.

4.5 Policy Authority
Policy Authorities store, manage and evaluate HGABAC policies
on behalf of User Service Providers. Policies are expressed in the
HGABAC Policy Language V2 (HGPLv2), an updated version of
the policy language introduced in the original HGABAC work[13].
The grammar for the updated language is given in Listing 7 in Aug-
mented Backus-Naur Form (ABNF). The most notable changes are
the use of HGABAC Namespace URIs in place of attribute names
and the addition of policy references. Policy references allow poli-
cies to reference other policies such that policies can be combined
using basic logical operations (AND, OR and NOT). For example, if

Listing 7: HGPLv2 Grammar in ABNF. An update to the
HGPL grammar from [13].
p o l i c y = p o l i c y "OR" term / term
term = term "AND" exp / exp
exp = var op var / ["NOT"] b o o l _ v a r

/ ["NOT"] " (" p o l i c y ") " / ["NOT"] p o l i c y _ i d
var = c o n s t / a t t _ i d
b o o l _ v a r = boo lean / a t t _ i d
op = " >" / " <" / " = " / " >=" / " <=" / " ! = " / " IN "

/ " SUBSET "
a tomic = i n t / f l o a t / s t r i n g / " NULL " / boo lean
c o n s t = a tomic / s e t
boo l ean = " TRUE " / " FALSE " / "UNDEF"
s e t = " { " " } " / " { " s e t v a l " } "
s e t v a l = a tomic / a tomic " , " s e t v a l
i n t = ["−"] + (DIGIT)
f l o a t = i n t " . " + (DIGIT)
s t r i n g = DQUOTE ∗ (%x20 −21 / %x23−5B / %x5D−7E

/ %x5C DQUOTE / %x5C %x5C) DQUOTE
a t t _ i d = <ATTRIBUTE URI FROM HGABAC NAMESPACE>
p o l i c y _ i d = <POLICY URI FROM HGABAC NAMESPACE>

P1 = “/user/age >= 18 OR /user/parent_consent” and P2 = “/object/au-
thor = /user/id” then a third policy could be created that references
P1 and P2, P3 = “/policy/P1 AND NOT /policy/P2” that would be
equivalent to P3 = “(/object/author = /user/id) AND NOT (/objec-
t/author = /user/id)”. Policies are restricted from creating recursive
or circular references and references to unavailable policies result
in UNDEF.

The Policy Authority Service is comprised of two subservices,
the Policy Administration Point Service and the Policy Decision
Point Service, and two databases, the Policy Database and the Envi-
ronment & Administrative Attribute Database. The Policy Admin-
istration Point Service allows for the creation and management of
policies by User Service Providers as well as the management of
administrative attributes (as defined in HGABAC). The Policy Data-
base stores HGPLv2 policies available for use by User Services and
the Environment & Administrative Attribute Database stores the
current values of environment and administrative attributes. The
Policy Decision Point Service authenticates user AC and evaluates
them against stored policies on behalf of a User Service.

Policy Authorities maintain a list of trusted Attribute Authorities
along with their unique ID and public key. AC are considered valid
by a Policy Authority if they satisfy the following requirements:
• The issuer of the AC is in the Policy Authority’s list of trusted

Attribute Authorities.
• The issuer’s public key and ID match those recorded by the Policy

Authority.
• The issue date of the AC is not in the future and is inside of the

valid before and after range given in the revocation rules.
• All revocation rules are met including the current time/date being

within the valid before and after range.
• The serial of the AC is not listed in the Attribute Authorities

revocation list (if available).
• The version of the AC and all extensions are compatible with the

Policy Authority.
• The signature is valid and verifiable with the Attribute Author-

ity’s public key.
After a session has been established and the AC authenticated

(as described in Subsection 4.4), the User Service evaluates a policy

HGAA: An Architecture to Support Hierarchical Group and Attribute-Based Access ControlABAC’18, March 19–21, 2018, Tempe, AZ, USA

User Service Provider

Protected User
Service

User Service Provider

Protected User
Service

Policy Authority

Policy Database

Static
Environment &
Admin Attribute

Database

Policy Authority

Policy Database

Static
Environment &
Admin Attribute

Database

Attribute Authority

User Attribute
Database

Attribute Authority

User Attribute
Database

User

Attribute Store
Service

Policy Decision Point
Service

Policy
Administration Point

Service

Attribute
Administration Point

Service

JSON-WSP
(Over TLS)

JSON-WSP
(Over TLS)

JSON-WSP
(Over TLS)

SQL

SQL

Python based webservice
using Ladon and

SQLAlchemy ORM

MySQL
 Database

Python based end
user client application

User Service
(implementation

details up to
service provider)

Legend

Figure 5: Technology and standards used in the HGAA implementation.

with the Policy Decision Point Service as follows (and shown in
steps 10, 11 and 12 of Figure 3):

(10) The User Service sends a Policy Evaluation request that includes
the session ID, the policy ID, and the set of object attribute value
pairs. The Policy Decision Point Service extracts the user and
connection attributes from the user’s AC (which it received
when the session was created) and checks that the session and
AC remain valid and no revocation rules have been triggered.

(11) If the AC remains valid, the decision point requests the policy
matching the given policy ID from the Policy Database. If the
policy references any other policy, these policies are also re-
quested and combined. The combined policy is analysed and
needed environment and administrative attributes are requested
from the Environment & Administrative Attribute Database.

(12) The combined policy is evaluated and the result (TRUE, FALSE
or UNDEF) is issued to the User Service.

5 IMPLEMENTATION & PRELIMINARY
RESULTS

As shown in Figure 5, we implement each HGAA service as a
Python-based JSON web service over TLS. Web services are created
with the Ladon[16] framework. HGAA databases are implemented
using MySQL and the SQLAlchemy[17] Object Relational Mapper
(ORM) is used to facilitate communication between services and
databases. Administrative services were not implemented at this
time as our current focus is on evaluating the performance and
scalability of the authentication and authorization features of the
architecture.

5.1 Attribute Certificate
We evaluate our AC scheme in terms of size and time required to
generate and sign the AC based on the number of user attributes in-
cluded in the certificate (number of connection attributes remained
constant at 35). The result of these comparisons are shown in Fig-
ures 6 and 7. We find that the size of the AC grows linearly with
the number of user attributes activated at a rate of approximately

36 bytes4 per attribute (for byte encoding with single value integer
attributes) and that the time to generate an AC also grows linearly
with the number of user attributes.

5.2 Attribute Authority
The Attribute Store Service of the Attribute Authority was evaluated
in terms of request and execution time. The results of this evaluation
are shown in Figure 8. Request time is defined as the time it takes a
client to generate a Certificate Request, send it to the Attribute Store
Service and receive a response (includes network and webserivce
overhead), while execution time is defined as the time taken from
the point the Attribute Store Service receives a request from a client
to the point where the service issues a response (only includes
time taken by the service to eventuate the request and generate a
response). The number of connection attributes remained constant
during testing (at 35).

We find that both the request and execution time increase linearly
with the number of user attributes activated and included in the AC.
The difference in request and execution time is related to network
and web service overhead that we believe can be largely reduced
by optimizing our implementation and moving to a different web
service framework.

5.3 Policy Authority
An interpreter for the HGPLv2 policy language was implemented
using python that utilizes a recursive descent parsing strategy. The
interpreter is divided into a number of modules as shown in Fig-
ure 12. As an optimization step, the abstract syntax tree (AST) of
a given policy is computed and stored in a binary format in the
Policy Database when a policy is added or modified. Additionally,
an intermediate symbol table, listing the attributes referenced in
the policy is computed and stored alongside the AST. Using these
precomputed ASTs reduces the time required to fulfill Policy Eval-
uation requests from User Services and the intermediate symbol
table allows the Policy Decision Point Service to request required
attributes without reanalysing the policy.
4This amount would vary based on a number of factors including the length of the
attribute UID, common name, type and number of values.

ABAC’18, March 19–21, 2018, Tempe, AZ, USA Daniel Servos and Sylvia L. Osborn

0 100 200 300 400 500 600 700 800 900 1,000
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25 ·105

Number of User Attributes

Siz
ei

nB
yte

s(
·10

5)

Size of Attribute Certificate v.s. Number of User Attribtues

Byte Encoding
Text Encoding

Figure 6: Size of Attribute Certificate v.s. Number of User At-
tributes

0 100 200 300 400 500 600 700 800 900 1,000
0

0.25

0.5

0.75

1

1.25

1.5 ·10−2

Number of User Attributes

Ti
me

in
Se

co
nd

s(
·10

−
2)

Time to Generate Attribute Certificate v.s. Number of User Attributes

Figure 7: Time to Generate Attribute Certificate v.s. Number of
User Attributes

0 100 200 300 400 500 600 700 800 900 1,000
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Number of User Attributes

Ti
me

in
Se

co
nd

s

Request and Execution Time v.s. Number of User Attributes

Request Time
Execution Time

Figure 8: Attribute Store Service Request and Execution Time
v.s. Number of User Attributes

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

Number of AST Nodes

Ti
me

in
Se

co
nd

st
oI

nt
erp

ret
Po

lic
y1

00
,00

0T
im

es

Time to Interpret Policy 100,000 Times v.s. Number of AST Nodes

Figure 9: Time to Interpret Policy 100,000 Times v.s. Number
of AST Nodes. Policy is evaluated from scratch (not using pre-
computed AST).

8 10 12 14 16 18 20
5

10

15

20

25

30

Number of AST Nodes

Se
co

nd
st

oD
ec

od
eo

rG
en

era
te

10
0,0

00
AS

Ts

Time to Decode or Generate AST v.s. Number of AST Nodes

Decode Time
Generate Time

Figure 10: Time to Decode AST Byte Format or Generate AST
from Scratch v.s. Number of AST Nodes. Time given is to de-
code or generate AST 100,000 times.

8 10 12 14 16 18 20

150

200

250

300

350

Number of AST Nodes

Siz
ei

nB
yte

s

Size of AST Byte Format v.s. Number of AST Nodes

Figure 11: Size of AST Byte Format v.s. Number of AST Nodes.

HGAA: An Architecture to Support Hierarchical Group and Attribute-Based Access ControlABAC’18, March 19–21, 2018, Tempe, AZ, USA

Lexer Parser

Type Checker

Optimizer Interpreter
Policy Text

Token
Stream AST

Optimized
AST {TRUE, FALSE, UNDEF}

{PASS, WARN,
ERROR} Attribute

Symbol
Table

Lexer Errors Parser Errors Optimizer Errors

Type Checker Errors & Warnings

Interpreter Errors & Warnings

Figure 12: HGPLv2 interpreter modules and information flow.

We evaluated the Policy Authority’s performance handling Pol-
icy Evaluation requests based on the time required to interpret a
policy, the time required to decode a precomputed AST and the
size of the precomputed AST. Results of this analysis are shown in
Figures 10, 11 and 9. A linear relationship between the number of
nodes in a policy’s AST and the time required to evaluate the policy
was found. Similarly, the time to generate or decode a policy AST
also grew linearly with the number of AST nodes as did the size
of the AST binary format. AST Nodes are used in place of number
of attributes in our analysis as we have found this to be a better
measure of a policy’s complexity than the number of attributes
referenced. However, further testing is needed to evaluate the im-
pact of requesting large number of administrative and environment
attributes from the Policy Authority’s Attribute Database or the
User Service sending a large number of object attributes.

6 CONCLUSIONS & FUTUREWORK
We have introduced the first complete architecture for HGABAC
that supports the full model and policy language in a distributed
environment. Each architecture component is detailed and the se-
quence of requests upon each service is described. An attribute
certificate specification and encoding is introduced for securely
sharing and proving ownership of attributes. The HGPL policy
language from [13] is updated to support policy references and our
HGABAC Namespace for uniquely identifying attributes (as well
as other HGABAC elements) across disparate security domains.

Details of a Python-based HGAA implementation are given and
preliminary evaluation results are discussed. Each analysis done to
date, shows a linear relationship with the number of attributes or
number policy AST nodes, suggesting linear scalability. A number
of possible optimizations are mentioned, including precomputing
policy ASTs and intermediate symbol tables. Further evaluation of
the architecture as a whole and under more diverse scenarios is
needed in future work as well as comparisons to solutions utilizing
generic architectures and standards (i.e. XACML, SAML, etc.) but
preliminary results are promising.

Other directions for future work include extending the AC specif-
cation and architecture to support the delegation strategies dis-
cussed in [14] and introducing more flexible revocation rules. Cre-
ating an administrative model for HGABAC (or possibly utilizing
the GURA model presented in [7]) would allow for the creation
of administrative services specified in HGAA but currently left
unimplemented.

REFERENCES
[1] Anne Anderson, Anthony Nadalin, B Parducci, D Engovatov, H Lockhart, M

Kudo, P Humenn, S Godik, S Anderson, S Crocker, et al. 2003. eXtensible Access
Control Markup Language (XACML) Version 1.0. Technical Report. OASIS.

[2] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. 2005. Uniform Resource
Identifier (URI): Generic Syntax. STD 66. RFC Editor. http://www.rfc-editor.org/
rfc/rfc3986.txt http://www.rfc-editor.org/rfc/rfc3986.txt.

[3] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. 2017. ABAC with Group Attributes
and Attribute Hierarchies Utilizing the Policy Machine. In Proceedings of the 2nd
ACM Workshop on Attribute-Based Access Control. ACM, 17–28.

[4] S. Farrell, R. Housley, and S. Turner. 2010. An Internet Attribute Certificate Profile
for Authorization. RFC 5755. RFC Editor. http://www.rfc-editor.org/rfc/rfc5755.txt

[5] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. 2011. The Policy
Machine: A Novel Architecture and Framework for Access Control Policy Speci-
fication and Enforcement. Journal of Systems Architecture 57, 4 (2011), 412–424.

[6] David Ferraiolo, Serban Gavrila, and Wayne Jansen. 2014. PolicyMachine: Features,
Architecture, and Specification. US Department of Commerce, National Institute
of Standards and Technology.

[7] Maanak Gupta and Ravi Sandhu. 2016. The GURAG Administrative Model for
User and Group Attribute Assignment. In International Conference on Network
and System Security. Springer, 318–332.

[8] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang,
Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen
Scarfone, et al. 2013. Guide to Attribute Based Access Control (ABAC) Definition
and Considerations (draft). NIST special publication 800, 162 (2013).

[9] John Hughes and Eve Maler. 2005. Security Assertion Markup Language (SAML)
v2.0 Technical Overview. Technical Report. OASIS. 29–38 pages. SSTC Working
Draft sstc-saml-tech-overview-2.0-draft-08.

[10] Xin Jin, Ram Krishnan, and Ravi S Sandhu. 2012. A Unified Attribute-Based
Access Control Model Covering DAC, MAC and RBAC. DBSec 12 (2012), 41–55.

[11] E Rissanen, H Lockhart, and T Moses. 2009. XACML v3.0 Administration and
Delegation Profile Version 1.0. Technical Report. Committee Draft.

[12] Carlos E Rubio-Medrano, Clinton D’Souza, and Gail-Joon Ahn. 2013. Supporting
Secure Collaborations with Attribute-Based Access Control. In Collaborative
Computing: Networking, Applications and Worksharing (Collaboratecom), 2013 9th
International Conference Conference on. IEEE, 525–530.

[13] Daniel Servos and Sylvia L Osborn. 2014. HGABAC: Towards a Formal Model
of Hierarchical Attribute-Based Access Control. In International Symposium on
Foundations and Practice of Security. Springer, 187–204.

[14] Daniel Servos and Sylvia L Osborn. 2016. Strategies for Incorporating Delegation
into Attribute-Based Access Control (ABAC). In International Symposium on
Foundations and Practice of Security. Springer, 320–328.

[15] Daniel Servos and Sylvia L Osborn. 2017. Current Research and Open Problems
in Attribute-Based Access Control. ACM Computing Surveys (CSUR) 49, 4 (2017),
65.

[16] Jakob Simon-Gaarde. Accessed: 2017-12-15. Ladon Webservice Framework. http:
//ladonize.org

[17] SQLAlchemy. Accessed: 2017-12-15. SQLAlchemy - The Database Toolkit for
Python. https://www.sqlalchemy.org/

[18] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de
Laat, M. Holdrege, and D. Spence. 2000. AAA Authorization Framework. RFC
2904. RFC Editor. http://www.rfc-editor.org/rfc/rfc2904.txt

[19] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. 2004. A Logic-Based
Framework for Attribute Based Access Control. In Proceedings of the 2004 ACM
Workshop on Formal Methods in Security Engineering. ACM, 45–55.

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc5755.txt
http://ladonize.org
http://ladonize.org
https://www.sqlalchemy.org/
http://www.rfc-editor.org/rfc/rfc2904.txt

ABAC’18, March 19–21, 2018, Tempe, AZ, USA Daniel Servos and Sylvia L. Osborn

A ATTRIBUTE CERTIFICATE BYTE ENCODING
Attribute Certificate

ACInformation

ACIssuer

ACHolder

Attribute Attribute

ACRevocationRules

ACDelegationRules

Extension Extension

ACSignature

C
er

ti
fic

at
e

B
o

dy

[P
ar

t
th

at
 is

 s
ig

ne
d

]

NA Attributes

NE Extensions

Number of
Attributes

(NA)

Number of
Extensions

(NE)

Date/Time IssuedVersion
Serial

Size (S)
Serial

[Little-Endian Encoded Number]

1 Byte S Bytes

ACInformation
4 Bytes

Key Algorithm
Public Key

[Format Based on
Key Algorithm]

Issuer UID
Issuer Name

[OPTIONAL]

Service URL
[OPTIONAL]

Public Key Size
(PK)

Key Algorithm
Size (KA)

Issuer UID Size
(UID)

Issuer Name Size
(N)

Service URL Size
(U)

2 Bytes

PK Bytes KA Bytes UID Bytes N Bytes U Bytes

ACIssuer

Key Algorithm
Public Key

[Format Based on
Key Algorithm]

Holder UID
Holder Name

[OPTIONAL]

Public Key Size
(PK)

Key Algorithm
Size (KA)

Holder UID Size
(UID)

Holder Name
Size (N)

2 Bytes

PK Bytes KA Bytes UID Bytes N Bytes

ACHolder

Attribute

Attribute ID Size
(ID)

Attribute Value
Size (V)

Attribute Name
Size (N)

Extension Size
(E)

2 Bytes

Attr.
Type

1 Byte

Attribute ID
Extension

[Format Based on Extension,
OPTIONAL]

Attribute Value
[String Encoded,

OPTIONAL]

Attribute Name
[OPTIONAL]

ID Bytes V Bytes N Bytes E Bytes

ACRevocationRules

Revocation List
URL Size (URL)

Extension Size
(E)

2 Bytes

Valid After
[UNIX Timestamp]

4 Bytes

Valid Before
[UNIX Timestamp]

Revocation List Service URL
[OPTIONAL]

Extension
[Format Based on Extension, OPTIONAL]

URL Bytes E Bytes

Signature Algorithm

Extension
[Format Based on Extension, OPTIONAL]

Extension ID

ID Bytes

Extension
[Format Based on Extension, OPTIONAL]

ACDelegationRules

Extension Size
(E)

2 Bytes E Bytes

ACExtension

Extension ID
Size (ID)

Extension Size
(E)

2 Bytes E Bytes

ACSignature

Signature
Algorithm Size

(SA)

Signature Value
Size (SV)

2 Bytes SA Bytes

Signature Value
[Format Based on Signature Algorithm]

SV Bytes

B
unsigned char

1 Byte
Little-Endian

variable length
bytes

I
unsigned int

4 Bytes
Little-Endian

H
unsigned short

2 Bytes
Little-Endian

s
variable length

string
utf-8

Little-Endian

Legend

Defined by
Subsection

Mandatory Part
(Solid Fill)

Optional Part
(Pattern Fill)

	Abstract
	1 Introduction
	2 HGABAC Background
	3 Related Work
	4 Architecture
	4.1 HGABAC Namespace
	4.2 Attribute Authority
	4.3 Attribute Certificate
	4.4 User Service Provider
	4.5 Policy Authority

	5 Implementation & Preliminary Results
	5.1 Attribute Certificate
	5.2 Attribute Authority
	5.3 Policy Authority

	6 Conclusions & Future Work
	References
	A Attribute Certificate Byte Encoding

